STUDENT NAME: _____

TEACHER: _____

HURLSTONE AGRICULTURAL HIGH SCHOOL

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 4

Mathematics Extension 1

-- ~ - ..

Examiners
Examiners

General	• Preparation time – 10 minutes
Instructions	• Working time – 2 hours
	 Scanning and uploading time – 1 hour
	Write using black pen
	 Calculators approved by NESA may be used
	• A Reference sheet is provided at the back of this paper
	• Multiple Choice Answer sheet is provided at the back of this paper
	• For questions in Section II, complete on your own paper and show relevant
	mathematical reasoning and/or calculations

· -

Fotal marks:	Section I – 10 marks
70	 Attempt Questions 1 – 10 Allow about 15 minutes for this section
	Section II – 60 marks
	• Attempt Questions 11 – 14
	• Allow about 1 hour and 45 minutes for this section

SECTION I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10

Question 1

What is the domain of the function $y = 5\cos^{-1}(4x)$?

A.	$-\frac{5}{4} \le x \le \frac{5}{4}$
B.	$-\frac{1}{5} \le x \le \frac{1}{5}$
C.	$-\frac{1}{4} \le x \le \frac{1}{4}$

D. $-1 \le x \le 1$

Question 2

Which of the following gives the coefficient of x^4 in the expansion of $\left(x - \sqrt{2}\right)^6$?

- A. –30
- B. 30
- С. –60
- D 60

Let $P(x) = x^2 + bx + c$ where b and c are constants. The zeroes of P(x) are α and $\alpha + 1$. What are the correct expressions for b and c in terms of α ?

A.
$$b = -(2\alpha + 1)$$
 and $c = \alpha^2 + \alpha$

B.
$$b = 2\alpha + 1$$
 and $c = \alpha^2 + \alpha$

C.
$$b = \alpha^2 + \alpha$$
 and $c = -(2\alpha + 1)$

D
$$b = \alpha^2 + \alpha$$
 and $c = 2\alpha + 1$

Question 4

The rate of change of the population (*P*) of a small regional centre in NSW can be approximated by the formula $\frac{dP}{dt} = -\frac{1}{10}(P-10000)$. Which one of the equations below is a solution to this differential equation?

A. $P = 10000e^{-0.1t}$

B.
$$P = -10000e^{-0.1t}$$

- C. $P = 10000 2000e^{-0.1t}$
- D. $P = 10000 + 2000e^{0.1t}$

Question 5

Which of the following is an expression for $y = \sin x + \sqrt{3} \cos x$ in the form $R \sin(x + \alpha)$?

A.
$$2\sin\left(x+\frac{\pi}{4}\right)$$

B. $2\sin\left(x+\frac{\pi}{3}\right)$
C. $2\sin\left(x-\frac{\pi}{4}\right)$

D. $2\sin\left(x-\frac{\pi}{3}\right)$

In the parallelogram ABCD shown, the point of intersection of the diagonals is O.

 $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$

What is the vector \overrightarrow{OC} equal to?

- A. $\frac{1}{2}(\tilde{a}-\tilde{b})$
- B. $\frac{1}{2}(a+b)$
- C. $\frac{1}{2}a b$
- D. $\frac{1}{2}\dot{p}-\dot{a}$

Question 7

If
$$y = \sin^{-1} \frac{a}{x}$$
, which of the following is an expression for $\frac{dy}{dx}$?

A. $\frac{-a}{x^2\sqrt{x^2-a^2}}$

B.
$$\frac{x}{\sqrt{x^2-a^2}}$$

C.
$$\frac{-x}{\sqrt{x^2-a^2}}$$

D.
$$\frac{-a}{x\sqrt{x^2-a^2}}$$

Which one of the slope fields below could be used to represent xy' - y = 0?

Question 9

Which of the following is a true statement?

A.
$$\sin 3x \sin 4y = \frac{1}{2} \left[\cos(3x - 4y) - \cos(3x + 4y) \right]$$

B.
$$\sin 3x \sin 4y = \frac{1}{2} \left[\cos (3x + 4y) - \sin (3x - 4y) \right]$$

C.
$$\sin 3x \sin 4y = \frac{1}{2} \left[\cos(3x + 4y) - \cos(3x - 4y) \right]$$

D.
$$\sin 3x \sin 4y = \frac{1}{2} \left[\cos(3x - 4y) - \sin(3x + 4y) \right]$$

What is the unit vector in the direction of a = -2i + 5j?

A.
$$\frac{1}{7}\left(-2\underline{i}+5\underline{j}\right)$$

$$\mathbf{B.} \qquad \frac{1}{29} \Big(-2\underline{i} + 5\underline{j} \Big)$$

C.
$$\frac{1}{\sqrt{29}} \left(-2\underline{i} + 5\underline{j} \right)$$

D.
$$\frac{1}{\sqrt{21}} \left(-2\underline{i} + 5\underline{j}\right)$$

End of Section I

SECTION II

60 marks

Attempt Questions 11 – 14

Allow about 1hour and 45 minutes for this section.

Answer each question on your own paper.

For questions **in Section II**, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a new Writing Booklet

- (a) Four politicians and four activists are seated alternately at a round table.
 (i.e. alternating so that no two politicians or two activists sit next to each other)
 In how many ways can this be done?
- (b) The letters of the word CONSIDER are rearranged at random. What is the probability that 1 an arrangement begins with 'SI' ?
- (c) A selection from the integers from 1 to 8 is made. How many numbers need to be selected
 from this group in order to be certain that the selection contains a pair of numbers that add
 up to 10?

Question 11 continued on Page 8

(d) Two boats on a lake start sailing at the same time.

Boat *A* moves on a course given by: $x = \frac{t}{2}$; y = t + 1. Boat *B* moves on a course given by: x = t - 2: y = 9 - 2t. where *t* measures the time elapsed in hours from when the boats started.

- (i) Find the Cartesian equation for the course of each boat and show that the courses 2 intersect at (1,3).
- (ii) Do the boats collide? Justify your answer supported by calculations.

(e) Find the vector projection of
$$\tilde{a}$$
 onto \tilde{b} if $\tilde{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\tilde{b} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

- (f) Find d_{ij} perpendicular to $c_{ij} = 4i_{ij} 3j_{jj}$ with a magnitude of 10.
- (g) $\triangle ABC$ is a triangle with $\overrightarrow{AB} = c$ and $\overrightarrow{AC} = b$. D and E are the midpoints of \overrightarrow{AB} and \overrightarrow{AC} respectively. F is a point on \overrightarrow{BC} such that $\overrightarrow{FC} = 2 \times \overrightarrow{BF}$

(i)	Express the vectors \overline{BC} and \overline{DE} in terms of \underline{b} and \underline{c} .	1
(ii)	What geometric property of a triangle is demonstrated by the answers to (i)?	1

(iii) Express \overrightarrow{AF} in terms of \underline{b} and \underline{c} .

End of Question 11

1

3

Question 12 (15 marks) Use a new Writing Booklet

(a) Consider the function
$$f(x) = x^2 - 4x + 6$$
.

find an expression for $f^{-1}(x)$.

(b) Differentiate
$$e^x \tan^{-1}(x)$$
. 2

(c) Find
$$\int_0^{\pi} \frac{4}{\sqrt{16-x^2}} dx$$
.

(d) Find
$$\int 2\cos^2(x) dx$$
.

(e) Using the substitution
$$u = x^2 - 2$$
, or otherwise,
find the exact value of $\int_{2}^{3} \frac{x}{\sqrt{x^2 - 2}} dx$.

(f) Prove by mathematical induction that $4^n + 14$ is divisible by 6 for all positive integers *n* where $n \ge 1$.

End of Question 12

Question 13 (15 marks) Use a new Writing Booklet

(a) A spherical tank used to transport an industrial liquid has a radius of 1 metre.

The volume of liquid in the tank for a depth of *a* metres can be found by calculating the volume of a suitable solid of revolution using integration methods.

The diagram below shows the cross section of the tank through its centre drawn on a cartesian plane.

(i) Show that the volume of liquid, of depth *a*, in the tank is given by:

$$V = \frac{\pi a^2}{3} \left(3 - a\right)$$

where *a* is measured in metres.

(ii) The tank in (i) above is being filled at a constant rate of $\frac{\pi}{10}$ m³/min.

(α) Find the rate of change of volume (V) with respect to depth (a). 1

(β) At what rate is the depth of the liquid increasing when the depth is 0.4 m?

Question 13 continued on Page 11

3

- (b) The region bounded by the curve $y = e^{-x}$, the coordinate axes and the line x = b, b > 0, is rotated about the *x*-axis.
 - (i) Find the volume of the solid of revolution generated in terms of *b*.
 - (ii) Find the limit of the volume of this solid as $b \to \infty$.

(c) Solve the differential equation
$$\frac{dy}{dx} = \cos^2 y$$
 given that $y = \frac{\pi}{4}$ when $x = 0$.

(d) The formula for the height of a tree, *H*, after *t* years can be found by solving the differential equation $\frac{dH}{dt} = 0.03H(45-H)$, given the tree is 0.3 metres high when it is planted.

(i) Show that the expression
$$\frac{1}{H(45-H)} = \frac{1}{H} + \frac{1}{45-H}$$
.

(ii) Solve the differential equation to find the formula for the height of the tree. 3

End of Question 13

2

Question 14 (15 marks) Use a new Writing Booklet

(a)

Sketch the graph of $y = \frac{2|x|}{(x^2 + 1)}$. Label all important features.

(b) By dividing the polynomial $f(x) = 2x^4 - 10x^3 + 12x^2 + 2x - 3$ by $g(x) = x^2 - 3x + 1$ write f(x) in the form shown below: f(x) = g(x)q(x) + r(x) where q(x) and r(x) are polynomials and r(x) has degree less than 2.

Question 14 continued on Page 13

Page 12

2

(c) Given that $(\sin \alpha - \cos \alpha)^2 = 1 - \sin 2\alpha$, What is the exact value of $\sin 75^\circ - \cos 75^\circ$? Leave your answer with a rational denominator.

(d) (i) If
$$\sin(x+\theta) = A\sin(x-\theta)$$
, prove that $(A-1)\tan x = (A+1)\tan \theta$. 3

(ii) Hence solve
$$\sin(x+40^\circ) = 3\sin(x-40^\circ)$$
, for $0^\circ \le x \le 360^\circ$. 2

(e) (i) Prove that
$$\tan(A+B+C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan C - \tan C \tan A}$$
.

(ii) Given A, B and C are acute angles of a triangle and
$$\frac{\tan A}{5} = \frac{\tan B}{6} = \frac{\tan C}{7} = k$$
.

Hence or otherwise show that $k = \sqrt{\frac{3}{35}}$ is the only solution to $\tan(A + B + C) = 0$.

End of Paper

Answers to Multiple Choice questions

Question 1:

$$y = 5\cos^{-1}(4x)$$
$$-1 \le 4x \le 1$$
$$-\frac{1}{4} \le x \le \frac{1}{4}$$
$$\therefore \text{ Answer C}$$

Question 2:

The term that contains x^4 in the expansion of $\left(x - \sqrt{2}\right)^6$ is $6C_4 x^4 \left(-\sqrt{2}\right)^2$ Coefficient of $x^4 = 6C_4 \left(-\sqrt{2}\right)^2 = 15 \times 2 = 30$ \therefore Answer B

Question 3:

Since the zeroes of P(x) are α and $\alpha + 1$ Sum of roots: $\alpha + \alpha + 1 = -\frac{b}{1}$ Product of roots $2\alpha + 1 = -b$ $\alpha \times (\alpha + 1) = \frac{c}{1}$ $\therefore b = -(2\alpha + 1)$ $\therefore c = \alpha^2 + \alpha$ \therefore Answer A

Question 4:

Upon differentiating

$$P = 10000 - 2000e^{-0.1t}$$

$$\frac{dP}{dt} = 200e^{-0.1t}$$

$$= \frac{1}{10} (2000e^{-0.1t})$$
but, $2000e^{-0.1t} = 10000 - P$

$$\therefore \frac{dP}{dt} = \frac{1}{10} (10000 - P)$$

$$= -\frac{1}{10} (P - 10000)$$
, the required differential equation

$$\therefore \text{ Answer C}$$

Question 5:

$$R = \sqrt{1^2 + (\sqrt{3})^2} = 2$$

$$\tan \alpha = \frac{\sqrt{3}}{1}, \quad \alpha = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$$

$$\therefore \sin x + \sqrt{3} \cos x = 2\sin\left(x + \frac{\pi}{3}\right)$$

: Answer B

Question 6:

Diagonals of a parallelogram bisect each other. $\therefore \overrightarrow{OC} = \frac{1}{2} \overrightarrow{AC}$

∴ Answer B

Question 7:

Question 8:

The differential equation xy' - y = 0 can be rearranged to give $y' = \frac{y}{x}$.

When x > 0 and y > 0, y' > 0. This rules out option C as gradients are negative in the first quadrant.

Also, when x < 0 and y < 0, y' > 0. This rules out A as gradients are negative in the third quadrant.

Lastly, when x = 0, gradients will be undefined. This leaves D as the correct answer as tangents are vertical when x = 0 and B has horizontal tangents when x = 0. \therefore Answer D

Question 9:

From reference sheet using $\sin A \sin B = \frac{1}{2} \left[\cos (A - B) - \cos (A + B) \right]$ $\sin 3x \sin 4y = \frac{1}{2} \left[\cos (3x - 4y) - \cos (3x + 4y) \right]$ is a true statement \therefore Answer A

Question 10:

All 4 responses feature the same vector a in brackets. To get unit vector, it's divided by its length. Use Pythagoras to do so. \therefore Answer C

Year 12 Mathematics Extension 1 Assessment Task 4 2021					
Question No. 11 Solutions and Marking Guidelines					
Outcomes Addressed in this Question ME 11-1: uses algebraic and graphical concepts in the modelling and solving of problems involving functions ME 11-5: uses concepts of permutations and combinations to solve problems involving counting or ordering					
ME 12-2: Applies concepts and techniques involving vectors to solve problems					
Outcome		(a)			
ME 11-5	$3! \times 4! = 144$	Award 1: Correct answer.			
	(b) $\frac{6!}{8!}$ or $\frac{1}{8} \times \frac{1}{7} = \frac{1}{56}$	(b) Award 1: Correct answer.			
	(c) 5 pigeonholes: [1], [5], [2,8], [3,7], [4,6] Therefore 6 values need to be selected to be sure of a pair that add to 10.	(c) Award 1: Correct answer.			
ME 11-1	(d) (i) Boat A: $y = 2x+1$ Boat B: $y = 5-2x$ Substitute $x = 1$ to RHS to show that LHS = $3 = y$ Boat A: $2(1)+1=3$ Boat B: $5-2(1)=3$ Therefore the point of intersection is $(1, 3)$.	(d) (i) Award 2: Correct solution Award 1 Both equations correct Award 1 Justification of point of intersection.			
	 (ii) Boat A is at (1, 3) when t=2, i.e. after 2 hours. Boat B is at (1, 3) when t=3, i.e. after 3 hours. Therefore they do not collide. 	(ii) Award 1: Correct answer with justification.			
ME 12-2	(e) Projection = $\frac{1 \times 2 + 2 \times 2}{(2 \times 2)^2} \times \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \frac{1}{2} \\ 1 \frac{1}{2} \end{pmatrix}$	(e) Award 2 Correct solution. Award 1 At least one correct dot product, or equivalent.			
	(f) Let $d = xi + yj \rightarrow dot$ product: $4x - 3y = 0$ $ d = 10 \rightarrow x^2 + y^2 = 100$ $\rightarrow x = 6, -6 y = 8, -8$ $\therefore d = \pm (6i + 8j)$ Alternately, you could find the 2 vectors in the form $d = k \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ where $ d ^2 = 100$	(f) Award 3: Correct solution with working. Award 2: Error in working, or failure to find both solutions. Award 1: Some significant progress.			
	(4) (g) (i) $\overrightarrow{BC} = \overrightarrow{b} - \overrightarrow{c}$ $\overrightarrow{DE} = \frac{1}{2}(\overrightarrow{b} - \overrightarrow{c})$ (ii) The interval joining the midpoints of 2 sides of s triangle is parallel to and helf the length of the third side	 (g) (i) Award 1 both vectors correct. (ii) Award 1: Both properties mentioned 			

(iii)

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF} = c + \frac{1}{3}\overrightarrow{BC}$$

$$= \frac{1}{3}b + \frac{2}{3}c$$
(iii) Award 2: Correct
solution simplified to one
component of *b* and *c*.
Award 1: Some significant
progress.

Year 12	Mathematics Extension 1 2021	TASK 4
Question No	b. 12 Solutions and Marking Guidelines	
	Outcomes Addressed in this Question	
ME12-1 –	applies techniques involving proof or calculus to model and so	lve problems
ME11-1 -	uses algebraic and graphical concepts in the modelling and sol	ving of problems involving
	functions and their inverses	
Part /	Solutions	Marking Guidelines
Outcome		
(a)(i)	$f(x) = x^2 - 4x + 6$ is a parabola, and <u>fails the horizontal line</u>	1 mark – Correct solution
MEII-I	<u>test</u> . So, the inverse of $f(x)$ over its entire domain is not a	(explains using the
	function.	horizontal line test, or
(a)(ji)		equivalent merit)
(a)(ll) ME11-1	Complete the square to express $f(x)$ in vertex form:	
	$f(x) = x^2 - 4x + 6 \qquad (x \le 2)$	
	$=(x-2)^{2}+2$	2 marks – Correct solution
	Swap x and y, and make y the subject:	1 mark Substantially
		I mark – Substantially
	$r = (v-2)^2 + 2$ (v < 2)	(swaps x and y, or equivalent
	$x^{-}(y^{-}2) + 2^{-}(y^{-}2)$	merit)
	$x-2=(y-2)^2$	
	$y-2 = -\sqrt{x-2}$ (discard $+\sqrt{x-2}$ as $y \le 2$)	
	$v = -\sqrt{x-2} + 2$	
	$c^{-1}(x) = \sqrt{1-2} + 2$	
	$f'(x) = -\sqrt{x - 2} + 2$	
(b)	$\frac{d}{d}(e^x \tan^{-1} x) = u'v + v'u$	
ME12-1	$dx^{(1)}$	2 marks – Correct solution
	$-e^{x} \tan^{-1} x + \frac{e^{x}}{2}$	
	$-e^{2}$ tan $x + \frac{1}{1+x^{2}}$	1 mark – Substantially
		correct (uses product rule)
(c)	$\begin{bmatrix} \pi & A & \begin{bmatrix} & (r) \end{bmatrix}^{\pi} \end{bmatrix}$	
ME12-1	$\frac{4}{\sqrt{1-x^2}} dx = 4 \sin^{-1} \left \frac{x}{4} \right $	
	$\int_0 \sqrt{16-x^2} \qquad \left[\qquad (4) \right]_0$	
	$\left[\begin{array}{c} & & \\ & & \\ \end{array} \right]$	2 marks – Correct solution
	$= 4 \sin^{-1}(\frac{1}{4}) - \sin^{-1}(0) $	
		1 mark – significant
	$=4\sin^{-1}\left(\frac{\pi}{2}\right) \qquad (\approx 3.61)$	progress towards correct
		solution (eg finds correct
		iniegrui)
		*** see note below about
		this question

(d)
ME12-1
Question 12 continued...

$$\int 2\cos^2 x \, dx = 2 \int \frac{1}{2} (1 + \cos 2x) \, dx$$

$$= x + \frac{1}{2} \sin 2x + C$$
(e)
ME12-1

$$u = x^2 - 2$$

$$du = 2x \, dx$$

$$x = 3 \Rightarrow u = 7$$

$$x = 2 \Rightarrow u = 2$$

$$\int_{-1}^{2} \frac{x}{\sqrt{x^2 - 2}} \, dx = \frac{1}{2} \int_{-2}^{2} \frac{2x}{\sqrt{x^2 - 2}} \, dx$$

$$= \frac{1}{2} \int_{-2}^{2} \frac{du}{\sqrt{u}} = \frac{1}{2} \int_{-2}^{2} \frac{u^{-1}}{\sqrt{u}^{-2}} \, du$$

$$= \left[u^{\frac{1}{2}}\right]_{-2}^{2} = \sqrt{7} - \sqrt{2}$$
(f)
ME12-1

$$4^{*} + 14 \text{ divisible by 6 for $n \ge 1$?
Show true for $n = 1$

$$4^{*} + 14 = 18 = 6(3) \therefore \text{ true for } n = 1$$
Assume true for $n = k$
is $4^{+} + 14 = 6q$ (p is integer)
 $4^{+} = 6(p - 14)$
Prove true for $n = k$, is $4^{+} = 6q$ (q is integer)
LIIS $= 4^{4+1} + 14 = 6q$ (q is integer)
LIIS $= 4^{4+1} + 14 = 6q$ (q is integer)
 $= 24p - 56 + 14$
 $= 24p - 42$
 $= 6(4p - 7)$)
 $= 6q$ (q is integer as $4p - 7$ is an integer)
 \therefore true by mathematical induction$$

Year 12 Mathematics Extension 1 Task 4 2021					
Question No. 13 Solutions and Marking Guidelines					
	Outcomes Addressed in this Question	on			
MA12-7	2-7 applies the concepts and techniques of indefinite and definite integrals in the solution of problems				
Outcome	Solutions	Marking Guidelines			
ME12-7	(a) (i)				
	Equation of circular cross section:	2			
	$x^{2} + (y-1)^{2} = 1$	5 marks Correct solution showing equation of			
	$r^2 = 1 - (v - 1)^2$	circular cross section, primitive			
	-1 $x^2 + 2x + 1$	function and substitution leading to			
	= 1 - y + 2y - 1	required expression.			
	= 2y - y	Substantial progress towards correct			
	<i>v</i> -axis between 0 and a (ie. the depth of the liquid in the tank)	solution.			
		1 mark			
	$V = \pi \int_{a} x^{2} dy$	solution showing knowledge of the			
		process of finding the volume of a			
	$=\pi\int_{0}^{1}2y-y^{2}dy$	solid of revolution.			
	$\begin{bmatrix} & & & \\ & & & & \\ & & & & \end{bmatrix}^a$				
	$=\pi \left y^2 - \frac{y}{3} \right $				
	$\begin{bmatrix} - & J_0 \\ & a^3 \end{bmatrix}$				
	$=\pi \left[a^2 - \frac{a}{3} \right]$				
	$(2z^2 - z^3)$				
	$=\pi\left(\frac{3a-a}{3}\right)$				
	πa^2				
	$=\frac{\pi a}{3}(3-a)$ as required				
ME12 7	(ii) (α)				
NIE 12-7	$V = \frac{\pi a^2}{2} (3 - a)$	1 mark Correct answer			
	3 ()	Confect answer.			
	$=\pi a^2 - \frac{\pi a}{3}$				
	dV ,				
	$\frac{1}{da} = 2\pi a - \pi a^2$				
	$=\pi a(2-a)$				
MF12_7	(β)				
	$dV \pi$	2 marks			
	Given $\frac{dt}{dt} = \frac{1}{10}$	Correct solution making use of the			
	Rate of change of depth with respect to time	1 mark			
	$\frac{da}{dt} = \frac{da}{dV} \frac{dV}{dV}$	Substantial progress towards correct			
	dt dV dt	solution.			
	$=\frac{1}{\pi}\frac{\pi}{(2-\pi)^{2}}\frac{\pi}{10}$				
	$\pi a(2-a)$ 10				
	$=\frac{1}{10\pi(2-\pi)}$				
	10a(2-a)				
	when depth of liquid $a = 0.4$				
	$\frac{aa}{dt} = \frac{1}{10 \times 0.4(2 - 0.4)}$				
	$u_1 = 10 \times 0.4 (2 - 0.4)$				
	$=\frac{1}{4 \times 1.6}$				
	5				
	$=\frac{3}{32}$ m / min				

ME12-7	(b) (i)	2 montrs
	$x = e^{-x}$	2 marks Correct solution
	y = e	1 mark
	$y^2 = e^{-2x}$	Substantial progress towards correct
	$V = \pi \int y^2 dx$	solution.
	$=\pi\int_{a}^{b}e^{-2x}dx$	
	0	
	$=\pi\left[-\frac{1}{2}e^{-2x}\right]_{0}^{b}$	
	$=\pi\left[\left(-\frac{1}{2}e^{-2b}\right)-\left(-\frac{1}{2}e^{0}\right)\right]$	
	$=\pi\left(-\frac{1}{2}e^{-2b}+\frac{1}{2}\right)$	
ME12-7	$=\frac{\pi}{2}\left(1-e^{-2b}\right) \text{ units}^{3}$	1 mark Correct evaluation of the limit.
	(ii)	
	$\lim_{b \to \infty} \frac{\pi}{2} (1 - e^{-2b}) = \frac{\pi}{2} (1 - 0) \qquad \text{since } \lim_{x \to \infty} (e^{-x}) = 0$	
MF12_7	$=\frac{\pi}{2}$ units ³	2 marks
	2	Correct solution.
	(c)	1 mark
	dy y	Substantial progress towards correct
	$\frac{dy}{dx} = \cos^2 y$	solution.
	dx = 1	
	$\frac{dy}{dy} = \frac{dy}{\cos^2 y}$	
	$= \sec^2 y$	
	$x = \tan y + c$	
	π o	
	When $y = \frac{1}{4}$, $x = 0$	
	$\cdot 0 = \tan \frac{\pi}{2} + c$	
	1.0 - 4	
	$c = -\tan\frac{\pi}{c}$	
	4	
	= -1	
NID 10 7	$\therefore x = \tan y - 1$	
ME12-7	$x + 1 = \tan y$	1 mark
	$y = \tan^{-1}(x+1)$	Correct solution
	(d) (i)	

ME12-7		RHS = $\frac{1}{H} + \frac{1}{45 - H}$ = $\frac{(45 - H)}{H(45 - H)} + \frac{H}{H(45 - H)}$ = $\frac{45 - H + H}{H(45 - H)}$ = $\frac{45}{H(45 - H)}$ OR $\frac{1}{H(45 - H)} = \frac{1}{45} \left(\frac{1}{H} + \frac{1}{45 - H}\right)$	
	(ii)	$\begin{aligned} \frac{dH}{dt} &= 0.03H(45-H) \\ \frac{dI}{dH} &= \frac{1}{0.03H(45-H)} \\ &= \frac{1}{0.03\times 45} \left(\frac{1}{H} + \frac{1}{45-H} \right) \\ \int \frac{dI}{dH} dH &= \frac{1}{1.35} \int \frac{1}{H} + \frac{1}{45-H} dH \\ t &= \frac{1}{1.35} [\ln H - \ln 45-H] + c \\ t-c &= \frac{1}{1.35} \ln\left \frac{H}{45-H}\right \\ 1.35(t-c) &= \ln\left \frac{H}{45-H}\right \\ e^{1.35(t-c)} &= \frac{H}{45-H}, 0 \le H \le 45 \\ e^{1.35t} \times e^{-1.35c} &= \frac{H}{45-H} \\ Ae^{1.35t} &= \frac{H}{45-H}, \text{ where } A = e^{-1.35c} \\ \text{When } t = 0, H = 0.3 \\ A &= \frac{0.3}{45-0.3} \\ &= \frac{1}{149} \\ \frac{1}{149} e^{1.35t} &= \frac{H}{45-H} \\ e^{1.35t} &= \frac{H}{45-H} \\ e^{1.35t} &= \frac{149H}{(45-H)} \\ (45-H)e^{1.35t} &= 149H \\ 45e^{1.35t} &= 149H \\ 45e^{1.35t} &= 149H \\ &= H(149+e^{1.35t}) \\ H &= \frac{45e^{1.35t}}{149+e^{1.35t}} \\ &= \frac{45}{149e^{1.35t}} = 1 \end{aligned}$	3 marks Correct solution showing all required steps. 2 marks Substantial progress towards correct solution, including showing correct use of equality shown to be true in part (i). 1 mark Some progress towards correct solution.
		$=\frac{45}{1+149e^{-1.35t}}$	

	(d)(i) Using $\sin(x + \theta) = 4\sin(x - \theta)$	
	$\sin x \cos \theta + \cos x \sin \theta - 4 \left[\sin x \cos \theta - \cos x \sin \theta \right]$	
	$\sin x \cos \theta + \cos x \sin \theta = A [\sin x \cos \theta - 4 \cos x \sin \theta]$ $\sin x \cos \theta + \cos x \sin \theta = A \sin x \cos \theta - 4 \cos x \sin \theta$	Award 3 marks for the
	$A\cos x\sin \theta + \cos x\sin \theta = A\sin x\cos \theta - A\cos x\sin \theta$	correct solution.
	$(A+1)\cos x\sin\theta = (A-1)\sin x\cos\theta$	Award 2 mark for substantial
	divide both sides by $\cos x \cos \theta$	solution.
	$(A+1)\cos x\sin\theta$ $(A-1)\sin x\cos\theta$	Award 1 mark for some
	$\frac{1}{\cos x \cos \theta} = \frac{1}{\cos x \cos \theta}$	progress towards the correct
ME12-3	$(A+1)\sin\theta (A-1)\sin x$	solution.
	$\frac{1}{\cos\theta} - \frac{1}{\cos x}$	
	$(A+1)\tan\theta = (A-1)\tan x$	
	$\therefore (A-1)\tan x = (A+1)\tan \theta$	
	(d)(ii)	
	$\sin(x+40^{\circ}) = 3\sin(x-40^{\circ})$	
	using part (i)	Award 2 marks for the
	$(3-1)\tan x = (3+1)\tan 40^\circ$	correct solution.
	$2\tan x = 4\tan 40^\circ$	Award 1 mark for substantial
	$\tan x = 2\tan 40^\circ$	progress towards the solution
	$x = \tan^{-1} \left(2 \tan 40^{\circ} \right), 180^{\circ} + \tan^{-1} \left(2 \tan 40^{\circ} \right)$	
	$x = 59.21^{\circ}, 239.21^{\circ}$ (correct to two decimal places)	
	(e) (i)	
	$\tan\left(A + B + C\right) = \tan\left[A + (B + C)\right] = \tan A + \tan\left(B + C\right)$	
	$\tan\left(A+B+C\right) = \tan\left[A+(B+C)\right] = \frac{1}{1-\tan A\tan(B+C)}$	Award 2 marks for the
ME12-3		correct solution.
	$\tan A + \frac{\tan B + \tan C}{1 - \tan B \tan C}$	Award 1 mark for substantial
	$\frac{-1}{1-\tan A}\left[\frac{\tan B + \tan C}{1-\tan B \tan C}\right]$	progress towards the solution
	$\tan A (1 - \tan B \tan C) + \tan B + \tan C$	
	$=\frac{1-\tan B\tan C}{1-\tan C-\tan A(\tan R+\tan C)}$	
	$\frac{1 - \tan D \tan C - \tan A (\tan D + \tan C)}{1 - \tan B \tan C}$	
	$=\frac{\tan A - \tan A \tan B \tan C + \tan B + \tan C}{1 - \tan B \tan C - \tan A \tan B - \tan A \tan C}$	
	$=\frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B \tan C}$	
	$1 - \tan A \tan D - \tan D \tan C - \tan C \tan A$	

